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Received 16 April 1986 

Abstract. A quantum spin model with three-spin coupling is studied by finite-lattice 
methods. The critical indices U and a are obtained by standard finite-size scaling analysis. 
Conformal invariance is used to estimate the exponents U and v, the central charge or 
conformal anomaly c and the anomalous dimension of a spin-: parafermion. We conclude 
that the model belongs to the same universality class as the four-state Potts and Baxter-Wu 
models, although the convergence of the various finite lattice estimators is extremely slow. 

1. Introduction 

Our knowledge of the critical behaviour of systems involving multispin interactions is 
rather limited compared with that of systems with two-spin interactions. Most of our 
understanding of the effects of multispin couplings on critical behaviour comes from 
two exactly soluble models: the eight-vertex model (Baxter 1972), which in magnetic 
language involves both two- and four-spin interactions, and the Baxter-Wu model 
(Baxter and Wu 1974, Baxter 1974), in which the only interactions are three-spin 
interactions around the elementary faces of a triangular lattice. Both models exhibit 
distinctive critical behaviour and reveal a diversity of critical behaviour that may be 
produced by multispin interactions. 

More recently (Turban 1982a, Penson et a1 1982, Debierre and Turban 1983) have 
introduced a two-dimensional Ising model with three-spin interactions in one direction 
(which we will call the ‘space’ direction) and simple two-spin interactions in the other 
direction (‘time’ direction). The Hamiltonian of the model is 

where the summation is over all sites of a (square) lattice, J ,  > 0 and J,  > 0 are coupling 
constants and ai,, = *1 are classical Ising variables. This Hamiltonian is self-dual 
(Turban 1982a, Debierre and Turban 1983), reflecting a general property of systems 
with two interactions per lattice site (Alcaraz 1982). 

A time continuous quantum Hamiltonian of (1.1): 

H = - C  U : U : + I ~ : + ~ - A  U; (1.2) 
I I 

t Permanent address: Departamento de Fisica, Universidade Federal de SHo Carlos, CP 616, 13560 SHO 
Carlos, SP, Brasil. 

0305-4470/87/010179 + 10%02.50 0 1987 IOP Publishing Ltd 179 



180 F C Alcaraz and M N Barber 

may be obtained by standard procedures (Fradkin and Susskind 1978), where a:, af 
are the spin-f Pauli matrices and A is a coupling constant. We shall refer to this 
Hamiltonian as the ‘three-spin transverse Ising model’. The Hamiltonian is also 
self-dual, implying, on the assumption of a single transition, that the critical coupling 
is A c  = 1 (Penson et a1 1982, Turban 1982b). 

The ground states of both ( 1 . 1 )  and (1.2) are four-fold degenerate; the possible 
states consisting of repetitions of the patterns +++, +--, -+-, --+, respectively. 
The relevant symmetry of the model is a semi-global Z(2)@Z(2) symmetry, which 
can be seen by partitioning the lattice into three sublattices such that the three-spin 
interaction involves a site from each sublattice. The Hamiltonians ( 1 . 1 )  and (1.2) are 
then symmetric under the reversal of all spins on any two sublattices. This symmetry 
is identical to that found in the Baxter-Wu model. 

This degeneracy and symmetry imply that the appropriate order parameter to 
describe the ordered phase has four components with an effective Landau free energy 
functional identical to the common functional describing criticality in the Baxter-Wu 
and the four-state Potts models (see, e.g., Barber 1980). These symmetry considerations 
lead to the conjecture (Debierre and Turban 1983, Maritan et a1 1984) that both ( 1 . 1 )  
and (1.2) belong to the same universality class as the Baxter-Wu and four-state Potts 
models with exponents (Baxter and Wu 1974, den Nijs 1979) 

(y =; .=z 3 7 = a .  (1.3) 
Direct tests of this conclusion, largely by finite-lattice methods, have been inconclus- 

ive to date. In the transfer matrix formalism, Debierre and Turban (1983) performed 
calculations on m x 00 strips with periodic boundary conditions for m = 3 ,  6, 9. While 
no definite conclusion on the value of exponents could be drawn, their results were 
not inconsistent with four-state Potts behaviour. In the Hamiltonian formalism (1.2) 
two different results have been reported. Penson et a1 (1982), on the basis of data 
from lattices of up to 15 sites with periodic boundary conditions, estimated ~ ~ 0 . 7 8  
but reserved any final conclusion on the universality class. On the other hand, Igl6i 
et a1 (1983) estimated v = 0.77 from lattices of up to nine sites with free edge boundary 
conditions and claimed that the model was in a different universality class from the 
four-state Potts model. 

In order to verify whether or not the exponent values (1.3) can be confidently 
excluded, we report in this paper a careful finite-lattice study of the quantum Hamil- 
tonian (1.2). Our analysis has two phases. We first extend the Penson et a1 (1982) 
calculation to lattice size m = 18. Secondly, we exploit recent predictions of conformal 
invariance (Cardy 1986b, von Gehlen et a1 1986) concerning the eigenvalue spectrum 
of a transfer matrix (or quantum Hamiltonian) of a two-dimensional system in a strip 
of finite width. 

The paper is arranged as follows. In the next section we describe our conventional 
finite-size scaling analysis. The exploitation of the predictions of conformal invariance 
is carried out in § 3. The paper closes with an overall summary and discussion in 0 4. 

2. Finite-size scaling 

The calculation of low-lying eigenenergies of a Hamiltonian such as ( 1 . 1 )  on a lattice 
of m sites is now standard (see, e.g., Hamer and Barber 1981a). We write 

(2.1) H = H , + V  
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with 

H , =  -A c a; v = -E u;4+1cr;+2 (2.2) 

and use the eigenstates of Ho as a basis. In this basis, the Hilbert space can be 
decomposed into disjoint sectors labelled by the eigenvalues of three parity operators 

which independently commute with (2.1) for all A. With periodic boundary conditions 
applied these sectors can be further block diagonalised according to the eigenvalues 
of the translation operator (linear momentum operator). 

We initially focus attention on the two lowest eigenvalues, & ( A ;  m )  and E , ( A ;  m ) ,  
of (2.1). The former is the lowest energy state in the zero momentum sector with 
PI = P2 = 1, while El is three-fold degenerate; the eigenstates being the lowest lying 
zero momentum states in the sectors PI = P2 = -1, and 9, = -9, = 1, PI = P2 = -1 
respectively. To evaluate Eo and El we used the Lanczos method (Hamer and Barber 
1981a, Roomany et a1 1980) starting respectively from the states I&) and 
(E L T L , / J M ) I ~ ~ )  where Ido) is the ground state of H , .  

From Eo and El (and their derivatives with respect to A )  we obtain the mass gap 

A m ( A ) = E l ( A ;  m ) - E o ( A ;  m )  (2.4) 

the Callan-Symanzik p function (Hamer et a1 1979) 

Pm(A) = -Am(A)[A,,,(A) - 2 A  aA,/aA]-' 

c,(A) = -(A'/m)a2E,,(A; m)/aA2. (2.6) 

(2 .5 )  

and the analogue of the specific heat per site 

Values of these quantities at the self-dual (and expected critical point) A = 1 are listed 
in table 1 for lattices of up to 18 sites. Note that m must be an integral multiple of 
three to fit the allowed ground states. These data form the basis of our finite-size 
scaling analysis. 

Unfortunately, even data from 18 sites appears to be insufficient to allow an accurate 
estimate of critical exponents. Certainly, sophisticated extrapolation methods (see e.g., 
Hamer and Barber 1981b) cannot be reliably applied. The best procedure we have 

Table 1. Finite-lattice data for the three-spin transverse [sing model (1.2) as a function of 
lattice size m. Listed are values at A = A ,  = 1 for the ground-state energy per site E,,/m, 
the specific heat c,, the mass gap A, and the p function p,. 

m -E,, /  m c,,, 4 8 ,  &> 

3 1.414214 0.353 553 1.080 363 0.427 051 
6 1.247 219 0.846 321 0.486 729 0.158 677 
9 1.219 590 1.225 855 0.315 628 0.090 683 

12 1.210 202 1.561 670 0.233 680 0.061 117 
15 1.205 910 1.871 693 0.185 522 0.045 013 
18 1.203 591 2.163 100 0.153 808 0.035 062 
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0.8 

0.6. 

0.4 

found is to use a simple ratio analysis (Gaunt and Guttmann 1974) of the sequences 
for P,,, and c,. On the basis of finite-size scaling, we expect (Barber 1983) 

p , , , ( ~ , )  - m-””  m+cO (2.7) 

c,,,(A,) - m+m. (2.8) 

Hence for large m, the ratios 

\ 
\ 

. \ 

*\ - 

and 

(2.9) 

(2.10) 

allow in principle estimates of 1/  Y and a /  v. These ratio plots are shown in figure 1. 
Considerable curvature in the plots is evident. The plots can be straightened by 
‘&-shifting’, i.e. by plotting the ratios against 1 / (  m + E ) .  In this way, we obtain 

v = 0.73 a /  v = 0.72 (2.11) 

the estimate for v agreeing with that of Penson et al (1982). However, the extreme 
curvature evident in the unshifted plots and the size of the shift needed to remove it 
makes us very hesitant in concluding that the available data even for m = 18 can be 
regarded as having reached the asymptotic regime. We shall return to this point in 
our concluding discussion in 0 4. 
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3. Conformal invariance 

Statistical mechanical systems at criticality are believed to be conformally invariant: 
an assumption that in two dimensions has many significant implications (for a recent 
review see Cardy 1986b). In particular, Cardy (1984, 1986a) has derived a set of 
remarkable relations between the eigenvalue spectrum of the transfer matrix in a strip 
of finite width and the anomalous dimensions of the operator algebra describing the 
critical behaviour of the infinite system. These results can be transcribed (von Gehlen 
et a1 1986) to the quantum Hamiltonian formalism in which we are interested. 

The pertinent results for our purposes are as follows. Decompose the state space 
of (2.1) as before into the ‘ground-state’ sector (9, = B2 = 1) and the degenerate 
‘excited-state’ sectors (PI = P2 = 1, PI = -P2 = -1, 9, = 9* = -1). Let EO,k, E l , k ,  k = 
0, 1, . . . , be the successive energy levels in these two sectors. Then conformal invariance 
implies that at the bulk critical coupling ( A  = A, = 1) and as m + 00 

(3.1) 

(3.2) 

where x, = 1712 and x, = d - 1/ v are the anomalous dimensions of the order and energy 
operators respectively. The constant 5 does not appear in the transfer matrix formalism 
but enters the Hamiltonian relations since the Hamiltonian may in principle be 
multiplied by an arbitrary constant (Alcaraz and Drugowich de Felicio 1984, Penson 
and Kolb 1984, Alcaraz et al 1985, von Gehlen et a1 1986). 

In addition to these relations on gaps at criticality, conformal invariance predicts 
(Blote et al 1986) that the ground-state energy per site should approach its bulk limit, 
eo, as 

(3.4) 
where c is the central charge or conformal anomaly of the appropriate conformal class 
of the transition in the bulk system. Friedan et al (1984) have argued that for unitary 
theories with c < 1, c is restricted to the countable set of values 

(3 .5)  

Eo/ m = eo - i r c l / m 2 +  o( 1/ m2) 

c = 1 - 6 / n (  n + 1) n = 3 , 4 ,  5 ,  . . . 
including c = 1. They showed that unitarity places no constraint for c 2 1. 

Extensive numerical tests on various models have confirmed these relations as 
powerful probes of bulk critical behaviour given finite-lattice data. However, before 
applying these ideas to the three-spin transverse Ising model two remarks are in order. 
The first concerns the validity of the assumption that the two-dimensional model (1.1) 
itself is conformally invariant at criticality let alone the quantum Hamiltonian version 
(1.2). The interactions in (1.1) are clearly not isotropic. However, by an appropriate 
choice of J,  and J , ,  say J t  and J T ,  the correlation function can be made asymptotically 
rotationally invariant. This model should then satisfy the basic assumptions-short- 
ranged interactions, scale invariance, rotational and translational invariance-that 
ensure conformal invariance (see Cardy 1986b). For J, # J,* and J, # J f ,  the decay of 
the correlation function may no longer be rotationally invariant. However, such a 
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decay can be recovered by anisorropically scaling the x and y directions differently. 
Since this is the same physical concept that underlies the quantum Hamiltonian limit 
(Fradkin and Susskind 1978) the quantum Hamiltonian itself should also be confor- 
mally invariant. The only problem is that the required degree of anisotropic scaling 
is unknown a priori giving rise to the (unknown) constant 6 that appears in (3.1)-(3.4). 

The second remark that should be made concerns the numerical calculation of the 
eigenvalues entering (3.1)-(3.3). Here the Lanczos scheme is particularly useful (see, 
e.g., Cullum and Willoughby 1981); the required eigenvalues following from the 
successive eigenvalues of the tridiagonal matrix generated by the Lanczos algorithm. 
We had no problem in recognising 'spurious' unphysical eigenvalues that arise from 
loss of orthogonalisation due to round-off error (Cullum and Willoughby 1981, Alcaraz 
and Drugowich de Felicio 1985). 

Table 2 lists values of mAE for the four energy levels entering (3.1)-(3.3) along 
with estimates of x, and x, that follow by dividing (3.1) and (3.3) by (3.2) respectively. 
Unfortunately, the brevity of the lattice data again limits the applicability of acceleration 
techniques. The sequence of estimates of x, can be accelerated by standard accelerators 
(see, e.g., Smith and Ford 1979, Barber and Hamer 1982) yielding x, = 0.13 consistent 
with 7 =a.  On the other hand, the sequence of estimates of x, is much less well 
behaved and the results of different acceleration techniques differ considerably. The 
best that one can definitely conclude from this approach is that x, < 0.65 implying 
v < 0.74 and that a lower value of x, and hence Y is extremely likely. 

We have also attempted to estimate the conformal anomaly c from (3.4). This is 
complicated by the necessity of estimating the (unknown) infinite lattice limit e,. 
Estimates of eo and b = -7rcl/6 obtained by fitting Eo to the form 

Eo= e,m + b / m  (3.6) 

using data from two different lattices are given in table 3. These results suggest b - -1.7 
which taking 5-20/27r implies c - 1.02. 

Table 2. Mass gap amplitudes and anomalous dimension estimates for three-spin transverse 
Ising model (1.2) as a function of lattice size. 

6 15.5060 14.5206 2.9204 1.0679 0.201 1 
9 14.8263 18.0770 2.8407 0.8202 0.1571 

12 14.4298 19.1208 2.8042 0.7547 0.1467 
15 14.1618 19.5640 2.7828 0.7239 0.1422 
18 13.9644 19.7927 2.7685 0.7055 0.1399 

Table 3. Estimates of e, and b = -rcC/6 (see text) obtained from two-point fits to the 
ground-state energy. 

6 9 -1.197 49 - 1.790 3 1.19 3.781 
9 12 -1.198 13 - 1.738 2 1.09 3.719 

12 15 -1.198 28 -1.716 65 1.05 3.701 
15 18 -1.198 33 -1.705 45 1.03 3.696 
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Alternativdy, we can eliminate the constant 6 by dividing the estimate of b obtained 
from lattice pair ( m , ,  mz) by the amplitudes m 2 ( E , , ,  - El,o) or mz(E,,,,- Eo,o) from 
table 2 leading to sequences that should tend to c / 1 2  and c / 6 7  respectively. The 
resulting estimates of c and c / v  are shown in the right-hand two columns of table 3. 
While the latter sequences are apparently monotonic decreasing away from c = 1, we 
believe that this is a finite-lattice effect and that c = 1 cannot be confidently excluded. 

Support for this view comes from similar estimations (see table 4) of the ratio c/ 7 
for the quantum Hamiltonian four-state Potts model and the Baxter-Wu model (transfer 
matrix formulation) using the published finite-lattice data of Hamer (1981) and Barber 
(1985) respectively. The four-state Potts estimates of c/ 7 are remarkably comparable 
to those obtained for the three-spin transverse Ising model and likewise are decreasing 
monotonically away from the expected value of 4. On the other hand, the Baxter-Wu 
data appear to be converging to the expected limit. 

Finally, following von Gehlen et al(19861, we have looked for gaps in the spectrum 
of H with A = A c  = 1 associated with the anomalous dimensions of parafermion 
operators (Fradkin and Kadanoff 1980) by applying different boundary conditions. 
Specifically, with antiperiodic boundary conditions and a non-cyclic initial Lanczos 
vector we found a new eigenvalue E l A  that did not appear in the spectrum for periodic 
boundary conditions. The difference between this eigenvalue and the ground state Eo,o 
with periodic boundary conditions is tabulated in table 5 along with the anomalous 

Table 4. Estimates of the ratio c / q  for ( a )  the quantum Hamiltonian four-state Potts 
model and ( b )  the Baxter-Wu model. 

( a )  

3 4 - 3.5 406 -1.7679 2.8307 3.7473 
4 5 -3.5435 -1.7216 2.7955 3.6951 
5 6 -3.5444 -1.6988 2.7729 3.6759 
6 7 -3.5448 - 1.6857 2.7569 3.6686 
7 8 -3.5449 - 1.6773 2.7449 3.6665 

3 6 0.015 17 -0.4256 0.6760 3.7775 
6 9 0.014 56 -0.4473 0.6788 3.9537 
9 12 0.014 52 -0.4509 0.6795 3.9819 

Table 5. Estimates of  parafermion dimension. 

6 10.9884 0.7567 
9 1 1.4586 0.6339 

12 11.6379 0.6087 
15 1 1.7359 0.5998 
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dimension xpf that follows by dividing this gap by m( E, , ,  - E , , J  from table 2. Extrapola- 
tion of this sequence suggests xpf = 0.53-0.56, consistent with the dimension (g = 
0.531 125) of the spin-$ parafermion operator of the four-state Potts model (von Gehlen 
et a1 1986, Nienhuis and Knops 1985). 

4. Conclusion and discussion 

In the preceding two sections we have presented a detailed analysis of finite-lattice 
data for the Hamiltonian three-spin transverse Ising (1.2) on lattices of up to m = 18 
sites. A conventional finite-size analysis (9  2) yielded the estimates 

v = 0.73 Q = 0.52. (4.1) 

These values are significantly different from the values ( v  = Q =:) expected if this 
model is in the same universality as the four-state Potts and Baxter-Wu models. 
However, they are remarkably close to the estimates of 

v = 0.71 f 0.02 Q = 0.53 * 0.02 (4.2) 

obtained by Hamer (1981) in a similar finite-size scaling analysis of the four-state Potts 
model also in a quantum Hamiltonian formulation. For the four-state Potts model, 
the slow convergence of finite-lattice estimators is attributed to the presence of 
anomalous logarithmic corrections due to the existence of a marginal field. In contrast, 
finite-lattice estimators for the Baxter- Wu model (for which the marginal field vanishes) 
are rapidly convergent (Barber 1985). This view has recently received some direct 
support by Spronken et a1 (1986) who analysed a model (the staggered Heisenberg 
chain) which has similar corrections and is also in the four-Potts class. Ignoring the 
logarithmic corrections and analysing their finite-lattice data in a conventional way 
gave v = 0.71 but estimators specifically constructed to allow for the logarithmic 
corrections gave lower values ( v  = 0.67), in accord with the true result. Unfortunately, 
to be usefully applied their methods of analysis require more data than we have. 

In the preceding section we analysed the spectrum of the three-spin transverse 
Ising model in more detail drawing on recent predictions of conformal invariance. 
This analysis yielded the estimates 

7 = 0.26 and v d 0.74 (4.3) 

the estimate for 7 in excellent agreement with (1.3). In addition, we were able to 
detect a parafermion operator with a dimension (-0.53) in close agreement with the 
value of g predicted for the four-state Potts model. 

Conformal invariance also allows a direct estimate from finite-lattice data of the 
conformal anomaly c and hence of the relevant universality class of the model. 
Unfortunately, the extraction of c from finite-lattice data is delicate, but our results 
are consistent with c = 1. 

Since c = 1 and 7 = a  are also the values that pertain to the eight-vertex model or 
Ashkin-Teller model in which v varies continuously with coupling, it is conceivable 
that the three-spin transverse Ising model corresponds to some point on the non- 
universal line of these models. However, this seems extremely unlikely due to the 
following argument concerning the structure of the spectrum of (1.2). 

Since the Hamiltonian (1.2) is translationally invariant and commutes for all A 
with the parity operators Pi (2.3), the spectra in the three sectors (9, = P2 = -1, 
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9, = -B2 = -1, 9, = -B2 = +1) should be identical. Conformal invariance (Cardy 
1986a, b) implies then that we should have three primary operators in the infinite 
system with equal dimension and spin. 

To understand the implications of this degeneracy further, it is convenient to recall 
the well studied spectrum of the general 2 ( 2 ) 0 2 ( 2 )  model (Kohmoto et a1 1981, 
Alcaraz and Drugowich de Felicio 1984) with periodic boundary conditions: 

-H = (4.4) 

where U*, T ~ ,  U', T' are Pauli matrices. The counterparts of the parity operators (2.3) 
are the operators 

{[Jl(CTfCT:+l + T : 7 : + 1 )  + J ~ C T ~ V : + I T : T : + ~ ]  + [J,(CT:+ T:)  + J 4 u : T : I )  
I 

e, =n CT: e,=n 7: e3 = e1e2 (4.5) 
I I 

which commute with (4.4). Hence in a basis that diagonalises, U* and T%,  the Hilbert 
space can be separated into sectors according to the eigenvalues of the operators 8, 
and B2. The ground state is non-degenerate and belongs to the ground state of the 
sector in which (e , ,  6,) = (+, +). 

The spectrum of the excited sectors (+, -), (-, +) are equal, due to the U -  T 

symmetry of (4.4). This implies that the anomalous dimension X, associated with the 
U' and 7' operators should be equal; or (a'(i)u'(i+ n ) ) = ( T ' ( i ) r ' ( i +  n ) ) .  On the 
other hand, the gap between the lowest eigenvalue of the excited sector (--) and the 
ground state is related to the dimension xp of the polarisation operator CTT, which 
governs the correlation function ( d ( i ) T ' ( i ) d ( i  + n)T'(i + n ) ) .  Since, for J 4 / J ,  # 1, 
x, # xp, the sector (--) is different from the other excited ones. However, when 
J 4 / J l =  1 the Hamiltonian (4.4) becomes the quantum version of the four-state Potts 
model. In this case, an additional symmetry (CT-CT,  C T T - p ) ,  makes all three excited 
sectors degenerate, with the result, as a consequence of conformal invariance, that 
X E  = X m .  

In the three-spin transverse Ising model (1.2), we have exactly the same picture: 
the three lowest excited states are those governing the two-point correlations in a given 
sublattice ( a 2 ( 3 i +  k ) u ' ( 3 i +  k +  n ) ) ,  k = 0 ,  1,2, and the magnetic exponents associated 
with these correlations should be equal, exactly as in the four-state Potts model. We 
feel that this is strong evidence that the three-spin transverse Ising model does indeed 
belong to the same universality class as the four-state Potts model and the Baxter-Wu 
model. It also raises the interesting possibility of embedding (1.2) in a generalised 
model whose phase diagram has the same topology as the Ashkin-Teller Hamiltonian 
(4.4). We develop this idea in a separate report (Alcaraz and Barber 1986). 
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